
MULTIGRID SOLUTION STRATEGIES FOR

ADAPTIVE MESHING PROBLEMS

Dimitri J. Mavriplis�

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

ABSTRACT

This paper discusses the issues which arise when combining multigrid strategies with

adaptive meshing techniques for solving steady-state problems on unstructured meshes. A

basic strategy is described, and demonstrated by solving several inviscid and viscous 
ow

cases. Potential ine�ciencies in this basic strategy are exposed, and various alternate ap-

proaches are discussed, some of which are demonstrated with an example. Although each

particular approach exhibits certain advantages, all methods have particular drawbacks, and

the formulation of a completely optimal strategy is considered to be an open problem.

�This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

i



INTRODUCTION

Although most work on adaptive meshing methods has concentrated on the logistics

of re�ning the mesh and the formulation of suitable re�nement criteria, e�cient solution

techniques for the resulting discrete equations are also required in order to enable both fast

and accurate solutions. The use of multigrid methods as fast solvers for computational 
uid

dynamics problems on both structured and unstructured meshes is now well established.

Adaptive meshing in particular provides a natural setting for the use of multigrid solvers.

The various re�ned meshes generated from the adaptive process can be used to form the

set of coarse and �ne meshes of the multigrid sequence. The multigrid algorithm can then

be used to accelerate the convergence to steady-state of the discrete equations on the �nest

adaptive mesh. In fact, the synergy between the two techniques is greater than may be

initially apparent, and has roots in the ideas of multi-resolution (see Figure 1). The role of the

adaptation process is to identify regions of the domain where the resolution of smaller scales is

required and to generate these required new mesh levels, while the role of the multigrid solver

is to eliminate the various high and low frequency errors of the solution on the grid level which

best represents them. This has led to the development of methods such as the FAC (Full

Adaptive Composite) method, [1], and to the notion of the dealgebraization of multigrid, as

described by Brandt [2], where the multigrid procedure is no longer viewed as simply a fast

solver for discrete equation sets, but rather as part of a complete strategy for approximating

the solution to the continuous partial di�erential equation. Spatial convergence is achieved by

the adaptation process, while temporal or numerical convergence is achieved by the multigrid

procedure. Additionally, the multigrid defect-correction (i.e. coarse grid source term in the

multigrid formulation) can be used to devise a re�nement criterion.

Although these ideas are appealing, their application to systems of non-linear equations

such as those found in computational 
uid dynamics is still a relatively unexplored research

area. In the present work, various adaptive-meshing multigrid strategies are proposed, and

evaluated both in practical terms (i.e. speed of convergence, complexity of V or W cycle),

and in terms of how well they obey the principles of multi-resolution.

DESCRIPTION OF BASE STRATEGY

The �rst adaptive-meshing multigrid strategy employed is denoted as the \basic strat-

egy". This method has been found to perform well in practice, and has been used to solve

a number of inviscid and viscous steady-state cases. The approach relies exclusively on the

use of unstructured meshes which greatly simpli�es the task of adaptation.
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Single Grid Solver

The Euler (inviscid) or Navier-Stokes (viscous) equations are discretized using a Galerkin

�nite element approach [3]. In the inviscid case, this reduces to a �nite-volume scheme where

the 
ow variables are stored at the vertices of the mesh, and the control volumes are formed

by the union of all triangles which touch the considered vertex. This corresponds to a central

di�erence scheme, and additional dissipative terms must be added in order to preserve sta-

bility. These are constructed as a blend of an undivided Laplacian and biharmonic operator,

with the Laplacian terms used to suppress oscillations near shocks, and the biharmonic terms

used to prevent odd-even decoupling in regions of smooth 
ow. These discrete equations are

integrated in time using a �ve-stage time-stepping scheme devised speci�cally to damp high

frequency error modes (as is required in a multigrid scheme). Integration to steady-state is

accelerated by the use of local time-stepping and residual averaging [3,4,5].

Adaptive Meshing Procedure

Adaptively re�ned meshes are generated by inserting new points into the existing mesh

in regions of large gradients, and connecting them to existing mesh points by Delaunay tri-

angulation. The re�nement criterion is based on simple undivided di�erences of one or more


ow variables. The di�erence of the 
ow variables across each mesh edge is compared to the

average di�erence across all edges of the mesh. When the di�erence along a given edge is

larger than some fraction of the average di�erence, a new mesh point is added midway along

the edge. If one or more edges of a given triangle are 
agged for re�nement in this manner,

then all three edges are re�ned. This ensures an isotropic re�nement strategy, which is nec-

essary to guarantee high quality meshes when using Delaunay triangulation. Once all the

new mesh points have been determined, they are inserted into the existing mesh sequentially

using Bowyer's algorithm for Delaunay triangulation [6]. Given an initial Delaunay triangu-

lation, this method enables the insertion of a point anywhere in the mesh, and determines

the reconnection of this point to the existing points, which is the Delaunay triangulation of

this newly augmented point set. As illustrated in Figure 2, Bowyer's algorithm �rst identi�es

all triangles whose circumcircle is intersected by the new point. These triangles are then

removed creating a polygonal cavity, and the new triangulation is formed by joining the new

point to all vertices of the polygonal cavity. New boundary points are repositioned onto

the spline curves which de�ne the geometry of the boundaries. After all points have been

inserted, the mesh is smoothed and edges are swapped in order to preserve the Delaunay

property [4,5,7]. Several passes of smoothing and swapping are usually performed. The use

of Bowyer's algorithm in this manner is ideally suited for adaptive meshing problems, since

new meshes are constructed through local modi�cations of an existing mesh, which is much
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more e�cient than global mesh regeneration. Furthermore, the Delaunay construction of

the adaptive meshes prevents the appearance of degenerate connectivities which can arise

with simple re�nement schemes such as triangle subdivision. Although a reverse Bowyer's

algorithm is simple to formulate in two-dimensions, provisions for point removal have not

been implemented, since the applications here concern exclusively steady-state problems.

For transient problems, point removal capabilities are essential.

Multigrid Approach

There are various possible strategies for implementing a multigrid method with adaptive

meshing techniques for unstructured meshes. One approach consists of using the adaptively

re�ned meshes as the multigrid levels themselves [4,5]. If, for example, adaptively re�ned

meshes are created by simply subdividing the appropriate mesh triangles into four �ner

nested triangles, multiple adaptive re�nement passes result in a sequence of fully nested

adaptive meshes to which multigrid can be applied in a straight-forward manner using simple

restriction and prolongation (inter-grid) operators. This approach has been pursued by

several authors in the literature [8,9]. One of the drawbacks of this approach is to restrict

the type of adaptive re�nement strategies which may be employed, and to tightly couple the

multigrid process with the adaptive mesh generation procedure. Furthermore, if the initial

unadapted grid is relatively �ne (which is most often required to resolve initial 
ow features),

multigrid e�ciency will be limited by the ability to e�ciently solve the discrete equations of

this mesh.

The multigrid approach adopted in this work relies on a sequence of coarse and �ne meshes

which are essentially independent from one another [3,4,5,11]. The various meshes of the

sequence are not required to be nested, or even to have common points. They simply must

discretize the same physical domain. Linear interpolation is used to transfer 
ow variables,

residuals and connections between the various meshes of the sequence. The intergrid transfer

operators must be formed in a preprocessing operation, where for each vertex of a given

grid, the enclosing triangle on the next coarser (or �ner) grid must be determined. Once this

information has been determined, grid transfer addresses and weights can be determined

and stored for later use in the multigrid solution cycles. This multigrid strategy enables

the adaptively re�ned meshes to be constructed by any means available, even global mesh

regeneration. The Delaunay construction employed here, and described in the previous

section, generally results in non-nested meshes, and meshes with no coincident points (due

to the mesh smoothing operation which displaces the mesh points). Furthermore, additional

coarser grids may be utilized to accelerate the solution of the initial grid itself. These are

generated using the same global mesh generation procedure as the initial mesh, but with
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lower resolution throughout the domain. The basic procedure consists of generating the

initial mesh, and several coarser meshes. The 
ow solution on the initial mesh is then

obtained using this sequence of meshes in the multigrid procedure. A new adaptively re�ned

mesh is then constructed, based on the solution on the initial mesh, and this mesh is then

added as a new �ner mesh to the current stack of multigrid levels. The restriction and

prolongation operators between the new and the initial mesh are then computed and stored.

The 
ow solution is interpolated from the initial mesh to the new �ner mesh using these

operators, and multigrid cycling resumes, using the newly augmented sequence of meshes.

This procedure can be repeated, each time adding a new �ner mesh to the sequence, until

the desired level of accuracy is obtained, as depicted in Figure 3.

A third multigrid approach for unstructured meshes consists of constructing the sequence

of coarse levelmeshes automatically, given a �ne grid. This approach is embodied in algebraic

multigrid methods [12], agglomeration strategies [13,14,15], as well as automated coarsening

methods used in conjunction with the independent-meshmultigrid approach described above.

Thus, in the context of adaptive meshing, each time a new �ner mesh is generated, the history

of adaptive re�nement which resulted in this mesh is ignored, and an automated algorithm is

used to generate a complete set of coarse mesh levels based on the new mesh. The philosophy

in this approach is to employ multigrid simply as a fast solver for discrete equation sets, in

the same manner as an implicit method or direct solver may be used to solve the �ne grid

equations. Since the history of re�nement is not utilized as part of the solution strategy,

the multi-resolution concepts discussed previously are not exploited. Such methods have,

however, proved to be advantageous, and will be discussed in more detail in the section on

Adaptive Multigrid Issues.

RESULTS

The �nite-volumemethod described above, combinedwith the non-nested multigrid strat-

egy and the Delaunay point-insertion adaptive mesh-re�nement technique has been used to

solve various inviscid and viscous 
ow cases. These techniques have been implemented in a

single FORTRAN code, which takes as input a sequence of coarse initial meshes, the desired

number of adaptive levels, the number of cycles on each level and the re�nement criteria for

each level, and outputs the sequence of adaptive meshes generated and the solution obtained

on the �nest mesh.

Inviscid Flow Case 1

The �rst case consists of the inviscid transonic 
ow over a NACA 0012 airfoil at Mach

number 0.8 and 1.25 degrees incidence. For this case, the outer boundary was approximately
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circular and placed at a distance of 100 chords from the airfoil. The initial mesh contained

2,112 points, and 5 coarser mesh levels were generated to accelerate the solution on this

mesh. The coarsest mesh of this sequence contains only 40 points. Three levels of adaptivity

were employed for this calculation. The �nal mesh is shown in Figure 4, and the solution

in terms of Mach contours is depicted in Figure 5. This mesh contains a total of 14,219

points. Mesh re�nement is evident in the region of expansion near the leading-edge, and in

the vicinity of both the upper and the weak lower shock. The slip line at the trailing edge

of the airfoil is however poorly resolved. The undivided gradient of density was used as the

re�nement criterion. Figures 6 and 7 depict the computed surface pressures and entropy for

this case. The shocks are well resolved, and the lift coe�cient of 0.3587 is in agreement with

previously reported values [16]. Entropy, computed as

s =
P

P1
�

�1

� 1

should be zero for inviscid 
ow ahead of the shock waves. As can be seen from Figure

7, the computed values near the leading edge are well below 1%, a good indication of the

local accuracy of this solution. The convergence rate of the entire adaptive process is shown

in Figure 8. At each state of adaptivity, 25 W-multigrid cycles were used to converge

the solutions, and 100 W-cycles were used on the �nal level, in order to demonstrate the

asymptotic convergence rate of this method. The residuals were reduced by 6 orders of

magnitude in 100 cycles, which corresponds to an average reduction rate of 0.89. This case

was performed in about 45 minutes of CPU time on an SGI Indigo R4000 workstation.

Inviscid Flow Case 2

The second case consists of transonic 
ow over a NACA 0012 airfoil at a freestreamMach

number of 0.95 and 0 degrees incidence. For this case, two oblique shock waves and a normal

shock wave are set up downstream of the airfoil. The position of the normal shock is very

sensitive to the accuracy of the solution. A similar strategy to that discussed for the previous

case is employed; i.e., �ve initial meshes, three levels of adaptivity, undivided di�erence of

density as a re�nement criterion. The �nal mesh and solution are depicted in Figures 9 and

10 respectively. This mesh contains approximately 16,000 points. The normal shock shown

in Figure 10 is located 3.06 chord lengths downstream of the trailing edges, which is slightly

ahead of that reported elsewhere [17]. In this case, the outer boundary was located 130

chords away from the airfoil leading edge. A previous run on a similar mesh with the outer

boundary located at 42 chords yielded a normal shock position of 2.6 chords. This highlights

the sensitivity of the solution to the position of the outer boundary. The use of a simple
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undivided di�erence as re�nement criterion may also be partly responsible for the inexact

shock location in this case.

This case should be perfectly symmetric about the y = 0 axis, since the NACA 0012

pro�le is symmetric, and the 
ow incidence is zero. An appealing feature of the present

adaptation strategy is that, in such cases, given an initial symmetric grid, the adaptively

re�ned grids remain perfectly symmetric, as can be seen from Figure 9. In the �nal solution,

the lift coe�cient remained zero, to 6 signi�cant �gures.

Inviscid Flow Case 3

The third test case involves the inviscid subsonic 
ow over the Sudhoo-Hall four element

airfoil. The freestream Mach number is 0.2, and the incidence is 0 degrees. Three levels

of adaptivity were used for this case, beginning with an initial mesh of 6,466 points. Four

coarser meshes were employed to accelerate the convergence on the initial mesh. Thus, a total

of 8 mesh levels were used in the �nal phase of the calculations. The �nal mesh contained a

total of 22,792 points, and is depicted in Figure 11. Figures 12 and 13 depict the computed

surface pressures and surface entropy on the �nest mesh. As can be seen, the entropy is

less than 0.1% over the entire con�guration, indicating a good level of local accuracy in the

solution. The lift and drag coe�cients for this case were 4.9245 and -0.0038 respectively.

For inviscid isentropic 
ows, the overall drag should vanish. Thus the drag value of -38

counts is a good indication of the global accuracy of the solution. Figure 14 depicts the

convergence rate for this case, where 100 multigrid W-cycles were performed at each level of

adaptivity. The slopes of the various multigrid convergence histories are nearly identical on

the four di�erent mesh levels, demonstrating the mesh independent convergence property of

the multigrid algorithm. Convergence on the �nal mesh is only slightly slower than that on

the initial levels, resulting in an average reduction rate of 0.925. The convergence history of

the computed lift coe�cient is also plotted. On each mesh level, the lift coe�cient comes

very close to its �nal value in less than 50 cycles. The e�ect of grid convergence can also be

seen by the diminishing di�erences between the �nal lift values on consecutively �ner meshes.

Figure 14 thus illustrates the concept of using adaptive-multigrid as a method of solving for

the continuous set of partial di�erential equations, with the lift coe�cient converging to the

in�nite resolution value, and the multigrid procedure driving the numerical solution on each

level. This entire run, including all mesh adaptivity, was achieved in approximately 2 hours

on an SGI Indigo R4000 workstation.
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Viscous Flow Case

This case consists of viscous turbulent 
ow over a three-element high-lift airfoil section.

The far-�eld boundary was placed at a distance of 50 chords away from the airfoil (wind-

tunnel walls were not modeled in this case). The �nite-element discretization of the Navier-

Stokes equations described previously was employed, and the single equation turbulence

model of Spalant-Allamaras [18] was implemented to account for turbulence e�ects. The

same multigrid strategy described previously was employed to solve both the 
ow equations

and the turbulence equation in a loosely coupled approach. The mesh re�nement procedure

required some modi�cation for the highly-stretched meshes which are typically used for

viscous 
ows. The Delaunay in-circle criterion described above is used in a mapped space,

(resulting in a Delaunay in-ellipse criterion) for both the initial mesh construction, and

subsequent adaptive re�nement operations [19]. When new boundary points are generated

by the re�nement procedure, these must be displaced in order to coincide with the surface

splines which de�ne the body shape. Whereas in the inviscid case this was easily achieved, in

the viscous case, this displacement can require the restructuring of many layers of grid cells

near the boundary. This is due to the possibility of the boundary point displacement being

much larger than the local normal grid spacing for highly stretched meshes. Thus, a system

of pointers is managed, in order to enable local mesh reconstruction near the boundary [19].

For this case, the freestream Mach number is 0.2, the incidence is 16 degrees, and the

Reynolds number is 9 million. Three levels of adaptivity were employed. The initial mesh

contained approximately 25,000 points, while the �nal adaptive mesh which is depicted in

Figure 15, contains 120,307 points. This mesh exhibits very high resolution in the regions

of rapid expansions and in boundary layer and wake regions. A combination of (undivided)

pressure and Mach number gradients were employed to identify inviscid and viscous phe-

nomena for re�nement. The solution in terms of computed surface pressure, is depicted in

Figure 16. This case involved a total of 7 multigrid levels (three adaptive levels, four initial

levels). The solution was obtained by running 100 multigrid W-cycles on each mesh, and

300 cycles on the �nal mesh. The residuals were reduced by 2.5 orders of magnitude on the

�nest mesh in 300 cycles. This rate is substantially slower than for the inviscid cases, and

is primarily due to the sti�ness associated with high grid stretching. For the viscous 
ow

cases, the mesh adaptivity operations are run as a separate job with a stand-alone code.

This case has been computed previously on non-adapted meshes of high resolution (up

to 240,000 points) and compared extensively with experimental data [20]. Although the

solution in Figure 16 appears well resolved, there are certain features, (such as the wake of

the slat element for example), which are lost prematurely when compared with the results
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of [20], due to inadequate grid resolution. This illustrates the di�culty in applying adaptive

meshing to viscous 
ows, where features such as wakes are both spatially hyperbolic and

nonisotropic, and highlights the need for better re�nement criteria.

ADAPTIVE MULTIGRID ISSUES

Although the previous examples demonstrate the e�ectiveness of multigrid as an e�cient

solution strategy for adaptive meshing problems, certain characteristics of adaptive prob-

lems can degrade the overall e�ciency of the above multigrid approach. These manifest

themselves, not as degradations of the observed convergence rates, but rather as unwanted

increases in complexity (number of operations) of the multigrid cycle. For example, in the

non-adaptive two dimensional case, the complexity of a V-cycle is bounded by 4/3 work

units, and that of a W-cycle by 2 work units, where a work unit is de�ned as the equivalent

work of one �ne grid iteration (see Figure 17 for the de�nition of these cycles). Here, the

meshes are not generated adaptively, and the above bounds are computed assuming each

coarser mesh level contains 1/4 the number of points of the previous level. In the case of

adaptively generated meshes, where such relations between the complexities of the various

mesh levels no longer hold, the V-cycle complexity becomes equal to the sum of the com-

plexities of all meshes in the sequence, while the W-cycle complexity can become so high as

to make it impractical.

Even the V-cycle complexity is much higher than it need be. For adaptively re�ned

meshes, re�nement only occurs in localized regions of the mesh, and there are large regions

of the domain where the mesh resolution is essentially unaltered between mesh levels. Re-

peatedly time-stepping in these regions of the mesh on various levels represents a waste of

computational e�ort. In this section, two strategies which overcome this increase in com-

plexity for V-cycles are described. A third approach which results in optimum complexity,

thus enabling the use of V or W cycles, is �nally discussed.

The Zonal Fine Grid Scheme

The basic idea behind this scheme [21] is to omit time-stepping in regions of the mesh

which have not been re�ned with regards to the previous level. A crude implementation

consists of making use of the same multigrid strategy as described previously, but blanking

out the appropriate vertices on each mesh level. In actual fact, the �ne mesh consists only

of the regions which have been re�ned, with possibly some extra bu�er layers. The method

can be implemented by only storing these regions at each level in order to save memory

(although this has not been done in this work).
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As an example, consider the adaptive mesh used to compute the inviscid 
ow over a

tandem airfoil con�guration, shown in Figure 18. This mesh is the result of 6 levels of

adaptivity. For the zonal �ne grid scheme, the 3rd and 4th adaptive levels are depicted

in Figure 19. Figure 20 compares the convergence rates of the zonal-�ne grid scheme with

that of the global multigrid scheme described previously for this case. There are in fact 8

mesh levels in both multigrid cases, 2 initial global levels, and 6 adaptively generated levels.

(The global levels are identical for both schemes). The freestream Mach number is 0.7, and

the incidence is 3 degrees. The resulting transonic 
ow solution is qualitatively depicted in

Figure 21. Both multigrid schemes converge at nearly identical rates, in terms of residual

reduction per cycle. This result veri�es the fact that multigrid time-stepping in regions

where no change in resolution occurs is unnecessary. The advantage of the zonal �ne grid

scheme is the result of the reduction in complexity of the multigrid cycle, as shown in Figure

20. For this case, the zonal �ne grid scheme is seen to be roughly twice as e�cient as the

global multigrid approach.

This so-called zonal �ne grid scheme developed in [21] is the unstructured mesh equivalent

of the fast-adaptive-composite scheme (FAC) [1], and as such embodies the multi-resolution

principles outlined in the introduction. Each mesh level is responsible for resolving a partic-

ular range of scales, and highly disparate length scales are not found on any common mesh,

as is the case in a global mesh with localized regions of adaptive re�nement.

One of the drawbacks of this method is that the �nal solution lies on a composite mesh

which is spread over various multigrid levels. Aside from practical di�culties involved in

postprocessing the solution, this complicates other issues, such as the requirement of con-

structing a conservative discretization in the �nal solution, as well as the use of di�erent

schemes on �ne and coarse mesh levels.

Zonal Coarse Grid Schemes

The idea of the zonal coarse grid scheme is to overcome the di�culties encountered in

the zonal �ne grid scheme due to the composite nature of the �nal solution, by maintaining

a global �ne grid upon which the �nal solution is based. In order to maintain favorable

complexity, time-stepping is omitted on the coarser meshes in regions of the domain where

no mesh re�nement takes place between two consecutive levels. This strategy is illustrated

in Figure 22, using one-dimensional linear meshes, and compared to the zonal �ne-grid and

global multigrid strategies. The overall complexity of the zonal �ne grid and coarse grid

schemes are necessarily equivalent. As can be inferred from the �gure, the zonal �ne grid

and coarse grid schemes are equivalent, except that in the former case the non re�ned mesh

regions are represented on the coarse level meshes, whereas in the latter, these are assigned
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to the �nest possible mesh level. Hence, the zonal coarse grid scheme simply corresponds to

a reordering of the local unre�ned and re�ned mesh levels.

The convergence rate of the zonal coarse grid scheme is compared with that of the zonal

�nd grid scheme and the global multigrid scheme for the transonic tandem-airfoil case on

the mesh of Figure 18. As expected, all three methods yield similar convergence rates on

a per cycle basis, while the zonal �ne and coarse grid schemes achieve a factor two gain in

e�ciency over the global multigrid scheme in this case due to the reduction in complexity,

as shown in Figure 20. Thus the zonal coarse grid scheme is equivalent to the zonal �ne grid

scheme in terms of e�ciency, but enables the �nal solution to be computed on a global �ne

grid. The disadvantage of this approach is that each time a new adaptively re�ned mesh is

generated, the zonal coarse meshes must be reassigned to the appropriate levels.

Aggressive Coarsening Strategies

While the zonal �ne and coarse grid schemes achieve substantial reduction in the com-

plexity of a multigrid cycle for adaptively generated meshes, the use of a W-cycle with such

schemes is still unpractical, due to the relative complexities of the various mesh levels. Since

the W-cycle performs frequent visits to the coarse level meshes within a single cycle, the

mesh complexity must be reduced by at least a factor of four when going to the next coarser

level in order to guarantee a bound on the overall W-cycle complexity, as the number of

mesh levels increases. Another characteristic of the zonal multigrid schemes described above

is that they rely on the adaptive re�nement history in order to identify the coarse and �ne

mesh levels. Such methods cannot be used e�ectively in the cases where this information is

not available, or in the case of a mesh of arbitrary construction.

Automated coarsening strategies can be employed to overcome these di�culties. Given a

�ne mesh, these methods automatically generate coarser level meshes for use in the multigrid

algorithm. Algebraic multigrid [12], and agglomeration multigrid [13,14,15] are examples of

automated coarsening strategies. Automated coarsening algorithms have also been devised

for use with the fully nested multigrid approaches [10] and the non-nested approach [22].

These methods are attractive because they are fully automated and can be applied to any

given grid, regardless of its construction. These methods represent a philosophy in which

multigrid is decoupled form the adaptive process, and employed simply as a fast solver for

a discrete �ne grid problem, much in the same manner as an implicit or direct solver would

be employed.

Aggressive coarsening relates to the attempt in an automated coarsening process to op-

timize the complexity of the generated coarse mesh levels. For a multigrid smoother which
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is designed to damp high-frequency errors (as is usually the case), the optimal reduction

in coarse grid complexity between two successive levels is 4:1 in two dimensions, and 8:1

in three dimensions. Aggressive coarsening strategies can be devised which result in such

reductions of mesh complexity, thus resulting in an overall multigrid cycle of near optimal

complexity, and enabling the use of V or W-cycles. Although the complexity of the multigrid

cycle may be optimal, the overall solution e�ciency can only be competitive provided the

multigrid convergence rate does not degrade substantially. Figure 23 provides a comparison

between the coarse mesh level obtained by two passes of aggressive coarsening on the �ne

mesh of Figure 18, and the equivalent mesh from the global multigrid sequence (6th level

out of 8). Because each cell of the original grid is forced to \grow" at the same rate, the

large outer boundary cells are seen to grow much more rapidly throughout the coarsening

process than the small re�ned cells in the shock region of the �ne mesh. This results in

large discontinuities in cell size which become even more pronounced on the coarser levels.

This in turn may degrade the observed convergence rate of a multigrid scheme based on

these mesh levels. A similar behavior is observed for agglomeration multigrid methods [15].

Aggressive coarsening strategies are evidently in complete violation of the multi-resolution

principle associated with adaptive multigrid methods, where each mesh level is responsible

for a given range of scales. Not only does each mesh level contain a wide range of scales in

the present approach, but the bandwidth of this range increases on the coarser mesh levels.

Nevertheless, for many problems, aggressive coarsening strategies are highly desirable,

both due to their fully automatic nature, and their low complexity. Such methods could

obviously be improved by trading o� complexity for more regularity in the coarse mesh

levels, and thus better multigrid e�ciency. However, this task generally requires global

information about the current �ne mesh construction (i.e. in the adaptive mesh case the

history of re�nement). This has important implications for the future design of automated

coarsening techniques, since at present, most of these methods (including algebraic multigrid

methods) rely exclusively on local information for constructing coarser levels.

CONCLUSION

Multigrid methods and adaptive meshing techniques have been shown to be complimen-

tary strategies which, when combined in the appropriate manner, can lead to a powerful

method which enables rapid convergence, both numerically and spatially, to the continu-

ous partial di�erential equation. Such methods naturally embody the principle of multi-

resolution where each mesh level is responsible for the spatial and numerical resolution of

given length scales. In practice, strict adherence to these principles is not always possible
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or desirable. Successful methods must achieve a balance between complexity, convergence

e�ciency, practicality, and ease of implementation.

A non-nested multigrid approach which utilizes each new adaptively re�ned mesh as

an additional multigrid level has been shown to work well in practice for a range of 
uid

dynamics problems. The simple re�nement criterion based on gradients in the 
ow solution

is not su�ciently reliable for application to all types of 
ows, particularly in the viscous case.

Improved re�nement criteria and/or better error estimates are sorely needed before adaptive

meshing can be routinely used with con�dence for complex viscous 
ows.
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